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An Efficient Energetic Variational Principle
for Modeling One-Port Lossy Gyrotropic

YIG Straight-Edge Resonators
Isabelle Huynen,Member, IEEE,Benôıt Stockbroeckx, and Guy Verstraeten

Abstract—This paper presents a new variational principle for
the design of one-port gyrotropic magnetostatic-wave (MSW)
resonators. We first prove the stationary character of the mag-
netic energy in case of a resonator containing lossy gyrotropic
media and supporting microwave MSW’s. We then show that
the variational expression may be successfully used for calcu-
lating the input reflection coefficient of a planar multilayered
MSW straight-edge resonator (SER). Results obtained using the
variational formulation are validated by experiment carried out
at X-band. Hence, the resulting model is an efficient tool for
designing low-noise wide-band yttrium–iron–garnet (YIG) tuned
oscillators.

Index Terms—Anisotropic media, gyrotropism, magnetostatic
waves, modeling, variational methods, YIG materials/devices.

I. INTRODUCTION

M AGNETOSTATIC-WAVE (MSW) planar devices in-
cluding yttrium–iron–garnet (YIG) films operate as

frequency-tunable delay lines or resonators in frequency syn-
thesizers, channel filters, and tuned oscillators. The models
found in the literature are based for both structures on the
characterization of the propagation mechanism of MSW’s in
a planar YIG film, which is coupled to planar transducers on
a substrate. The most important part of the work on MSW
devices deals with MSW delay lines, which are designed as
transmission devices [1]–[4].

Concerning YIG resonators based on a stationary behavior
of MSW’s, many efforts have been devoted in the past
to the calculation of the resonant frequencies in order to
predict spurious interferences between harmonics [5]–[7]: a
dispersion relation for the MSW is computed, from which a
resonance condition involving the geometry of the resonator is
written. Such an approach has been validated by measurements
on the resonant frequency of finite-size YIG straight-edge
resonators (SER’s) [7]. To the best of our knowledge, no
formalism has been established for modeling the coupling
mechanism between the transducer and the YIG SER, and
obtaining, for example, the frequency-dependent one- or two-
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port scattering parameters of the resonator. Weak coupling
occurs when the multilayered resonator is placed close to
the transducer, but not above it (edge coupling). We have
proposed earlier (for this case) an efficient model based on
the computation of a coupling between two transmission
lines modeling, respectively, the YIG resonator and its two
microstrip accesses [8]. When the resonator is placed on the
transducer (one-port top-coupled configuration) the separation
into two different transmission lines is not possible because
strong coupling does occur. Hence, it seems preferable to use
the input admittance formalism; this circuit parameter has to
be expressed as a function of the modes of the equivalent
cavity formed by the resonator. These modes, however, may
be difficult to compute when the cavity is open or has a
complicated geometry. Another difficulty arises from the fact
that existing formulations for the input admittance are usually
limited to Hermitian media: in particular, perturbational and
variational formulations available for this parameter are not
applicable to YIG SER’s because of the presence of non-
Hermitian and inhomogeneous media [9]–[11].

In this paper, we develop an energetic formulation for the
computation of the reflection coefficient of a planar one-
port SER YIG resonator “top-coupled” onto a microstrip
line. We first show that the energy associated with MSW
is variational even in the case of lossy gyrotropic, thus
non-Hermitian magnetic materials. Our formulation is more
general than quasi-static variational principles, which require
that the media are at most Hermitian [12]. We transpose the
electrostatic variational energetic formulation valid for homo-
geneous isotropic media into a magnetic energetic formulation
for inhomogeneous microwave planar structures including
gyrotropic lossy layers, and we extend to this dynamic lossy
gyrotropic case the proof of stationary behavior valid for the
electrostatic homogeneous case. The resulting formulation is
well suited for the modeling of forward magnetostatic volume
waves resonators developed for YIG-tuned oscillator (YTO)
designs, as illustrated in a following section.

II. DEVELOPMENT OF THE ENERGETIC

VARIATIONAL FORMULATION

A. MSW Assumption

We consider the whole space, containing several bodies
having different permittivities and permeabilities. Maxwell’s
equations in the th medium are rewritten using the MSW
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hypothesis as

(1a)

(1b)

(1c)

with the constitutive relationship

(2)

The MSW assumption has been widely used for the analysis
and design of YIG-tuned devices [13] as well as for the design
of numerous ferrite devices [14]. It is based on the assumption
that MSW’s can propagate inside a ferrite body, and have a
slow phase velocity when compared with the electromagnetic
wave. As a consequence, the electric flux density in the
second Maxwell’s equation (1b) is neglected [15], but the first
Maxwell’s equation is still present (the MSW fields in YIG
devices do not obey the equations of the statics [16], [17]).
Hence, in the areas where no source of current is present, the
curl of the magnetic field is zero, which is equivalent to say
that the magnetic field derives from a scalar potential noted

(3)

By virtue of (1c) and (2), this scalar potential has to satisfy

(4)

B. Expression of Poynting Theorem

Multiplying the first Maxwell’s equation written in layer
by the complex conjugate of the magnetic field inside this
layer and the complex conjugate of the second one by the
electric field , and subtracting the two resulting equations
yields (after rearranging)

(5)

Integrating the two sides over the whole space and applying
the divergence theorem to the result yields

(6)
where is the surface enclosing the volume of body ,
and is the normal unit pointing outward the surface.

For a multilayered structure, each body is a planar layer,
and the contributions to the surface integrals resulting from
the two sides of the interface between layersand (common
to and ) compensate. The continuity of the tangential
components of the magnetic and electric field is indeed ensured
at the conductor-free part of this interface, while the normal
component of the power density vanishes on any perfect
conductor lying at this interface. Hence, in the case of a planar
multilayered structure, the surface to be considered reduces to
the surface enclosing the volumecontaining all the layers

(7)

The right-hand side of (6) is, in fact, the summation of the
magnetic energy contained inside each volume. When
volume contains an homogeneous medium, (6) reduces to
the classical Poynting theorem where the electric flux density
has been neglected. Hence, the MSW hypothesis is equivalent
to neglecting the electric energy in the Poynting theorem.

Also, under the MSW assumption, the total magnetic energy
associated with MSW and present in the right-hand side of (7)
may be rewritten using (2) and (3) as

(8)

We prove in the Appendix that when using (8), ( ) is
variational with respect to the scalar potential associated
with MSW’s in each layer.

C. Comments

From the proof in the appendix, we conclude that the first-
order error made on vanishes when the exact magnetic
potential associated with MSW’s is replaced by a trial one
noted , provided that:

1) trial potential satisfies (4);
2) trial potential is continuous at the conductor-free part

of any interface between two adjacent media having
different constitutive parameters;

3) trial induction field obtained as has con-
tinuous normal components at the conductor-free part
of such an interface;

4) on a perfect conductor present on a portion of such an
interface, either the continuity of the product

or the cancellation of the normal component of the
trial induction field is ensured.

It should be emphasized that no assumption has been made
on the dielectric and magnetic properties of the materials. The
derivation indeed neither requires complex conjugates of the
tensors nor their transposition: the Hermitian nature ofand

is not invoked here. Hence, the expression is variational
even when losses are present in the media. Our proof departs
from that presented by Collin [12] in three ways. First, the
formulation applies to the magnetic energy, and not to the
electrostatic energy. Collin indeed mentions the stationary
character of both the electrostatic and magnetostatic energies,
but gives a proof for the electrostatic energy only. In our
case, however, the energy which is calculated is the magnetic
energy, and not only the magnetostatic one corresponding
to a dc case: the frequency dependence is present in each
component of the permeability tensor of the gyrotropic layers.
This energy has also been mentioned to be stationary by
Davies, but no proof was provided. Davies [18] proposes
the use of the variational character of the right-hand side of
(8) to deduce some variational expressions for the resonant
frequency of cavities. Second, the proof has been extended
to inhomogeneous media, which was not done by Collin.
Finally, the proof is shown to be valid even when lossy
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(a)

(b)

(c)

Fig. 1. Topology of one-port YIG SER supporting MSFVW. (a) Top view.
(b) Transverse geometry. (c) Perspective view showing the volume considered
for the integration: sides are represented by dashed lines in Fig. 1(a) and (b).

gyrotropic media are present, because the conditions rendering
stationary do not imply any restriction on the constitutive

parameters. Hence, our formulation is well suited for analyzing
planar gyrotropic resonators operating at-band.

III. A PPLICATION FOR DESIGNING PLANAR

MSW GYROTROPIC RESONATORS

A. Topology Under Scope

Fig. 1 depicts the top-coupled topology designed by the
authors for obtaining an overcoupled behavior of the resonator
at the main resonance. It consists of a square piece of a
YIG film (3) lying on a square quartz spacer (2) having the
same area. The two samples are positioned on a microstrip
stub, ended by a wide-band RF short circuit, in order to
keep the transverse magnetic field inside the strip close to
a maximum in the area covered by the YIG sample. A
maximum of coupling is thus expected at-band. Assuming a
propagation of MSW in the-direction of Fig. 1, three implicit

TABLE I
GYROTROPIC PARAMETERS OF YIG FILM IN FIG. 1

TABLE II
GEOMETRICAL DIMENSIONS OF BREADBOARD IN FIG. 1

dispersion relations are obtained when the film is considered
as infinite in both the - and -directions, depending on the
orientation of the uniform dc biasing magnetic field [15].
A forward-volume MSW occurs when is -oriented. Two
magnetic poles are thus necessary to bias the YIG film and
generate magnetostatic forward-volume waves (MSFVW’s).
The microstrip substrate is grounded by the bottom pole,
assumed to be a perfect electric conductor at RF frequencies.
The upper pole acts as a perfect conductive top cover for the
RF structure. Hence, the structure has four layers, the first two
being low-loss isotropic dielectric substrates, while the third
one is a lossy gyrotropic (hence, non-Hermitian) substrate,
and the upper layer is air. Layers 1, 2, and 4 have isotropic
(diagonal) dielectric and magnetic constitutive tensors

for

and

for

while the permeability tensor of the third layer has the form

(9)

with and Expressions for the
complex components of are given in [19], as a function of
the YIG film parameters and of the biasing dc magnetic field.
The YIG film parameters and the geometrical dimensions of
the breadboard are reported in Tables I and II.
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B. Definition of the Enclosing Surface S

At the edges of the YIG film, the equivalent boundary
condition is a perfect magnetic wall. This condition is fixed by
the demagnetizing effect occurring on the dc field at the lateral
sides of the SER: as a consequence, the tangential components
of the magnetic field vanish on the lateral sides of the SER,
as stated by [20]. Hence, we find a sufficient condition to be
satisfied by both the exact and trial tangential fields on the
lateral sides of the sample

at and (10a)

at and (10b)

By choosing the surface enclosing the global volumeas
the one containing those lateral sides, one easily satisfies the
proper boundary conditions on surface ensuring that the
error (A16) vanishes. This will be shown later.

C. Choice of the Trial Field and Potentials

We start from (4), which has to be satisfied by the trial
magnetic potential in each layer. For a-directed dc magnetic
field as in Fig. 1, this equation, denoted Walker’s equation in
the literature, is rewritten as

(11)

A general solution for this equation is [16]

(12)

being the wavenumber along the
-axis , wavenumbers along the- and -axis, re-

spectively. It describes the distribution of microwave MSW
potentials in multilayered magnetized matter. It has to be noted
that MSFVW propagation occurs in the frequency range for
which the real part of is negative.

The interface containing the strip has to be treated separately
because of the nonhomogeneous boundary condition on this
area. As is done in [21] and [22], we work in the spectral
domain, using for this the-Fourier-transform of (12) for the
potential

(13)

from which we obtain the spectral form of the three magnetic-
field components

(14a)

(14b)

(14c)

According to our proof in the appendix, a suited trial-potential
rendering (8) variational has to satisfy the continuity of the trial
potential and of the normal component of the induction field
at conductor-free interfaces between different layers inside the
volume . For the configuration of Fig. 1, the component
has to be continuous at various interfaces. We obtain a first
set of boundary conditions to be satisfied by the trial potential
and induction field, hence, by their spectral form by virtue of
the linearity of the Fourier-transform

at

(15)

(16)

at

(17)

(18)

We assume that the top and bottom magnetic poles are perfect
electric conductors, and impose that the normal induction field
has to vanish on them as follows:

at

(19)

at

(20)

A nonhomogeneous boundary condition holds at the interface
containing the strip. We assume that a trial current density
is flowing on the strip, and that its-dependence is known

(21)

with for . Hence, its
spectral form is also known

(22)

The magnetic field deduced from the trial potential via (3) has
to satisfy a relationship involving the current density

(23)

(24)

while the normal component of the induction field may be
imposed continuous

(25)

Equation (14c) shows that the spectral dependence of the
-component of the magnetic field remains proportional to the

spectral trial potential, and a condition sufficient to satisfy the
continuity of at interface is to choose

. This condition makes the-component of the
magnetic field (hence, of the trial potential) continuous, and the
product is continuous by virtue of (25). Another
solution is to keep unknown, and to subtract the integral
(A15) from the energy, after having computed the fields.
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Solving the set of equations resulting from the boundary
conditions yields an expression for each coefficient ,

which is proportional to the trial -component of
the current density. Introducing those coefficients into (13)
and (14) yields the spectral trial potential and its derived
magnetic-field components.

By virtue of (14) for the magnetic field, we see that
satisfying boundary conditions (10) on the enclosing sur-
face is equivalent to impose that the MSW potential
vanishes on the lateral sides of the enclosing surface.
Hence, the -dependence of the potential (trial and true)
is

with (26)

The presence of perfect magnetic walls at
is expressed in the spectral domain by imposing that
[22]

(27)

Hence, the combination of the boundary conditions (10)
on the lateral sides of the surface and of the bound-
ary conditions (19) and (20) on the bottom and top
surfaces of the volume ensures that the error (A16) van-
ishes.

The obtained spectral potentials and fields in each layer are
introduced in the right-hand side of , as explained in [22].
We make use of Parseval identity relating the integral of a
product of two functions to the integral of the product of their
Fourier transform. The magnetic energy in (7) is rewritten
as a function of spectral quantities as

(28)

In our case, the spectral integration on is replaced by a
summation on discrete values for because of the boundary
conditions (27) applying to the trial potential on the lateral
sides of the sample.

D. Expression for the Reflection Coefficient

We relate this spectral variational form of the magnetic
energy to the input impedance of the one-port top-coupled
SER configuration in the following manner. Defining at the
input access equivalent current and voltage related by
an input impedance , we equate the power flow inside of
the surface to the circuit-oriented definition of this power
flow

(29)

Combining (7), (8), and (29) yields the final expression of the
input impedance

(30)

Keeping in mind that the trial potentials and fields are
proportional to the current density flowing on the strip, by
virtue of (23) and (24), we express the input current as the
integral of the -dependence of the trial current density

(31)

From the input impedance the reflection coefficient at the
input of the one-port is easily calculated

(32)

where is the reference impedance. We take it equal to 50.

IV. RESULTS

A. Experimental Validation

Fig. 2 shows a comparison between a simulation based on
this model [see Fig. 2(a)] and measurements [see Fig. 2(b)]
carried out by Alcatel-Bell, Hoboken, Belgium [23], on the
configuration presented in Section III-A. The simulation takes
into account the geometrical and physical parameters of the
various layers and of the shielding, including their losses. As
expected, the simulated reflection coefficient [see Fig. 2(a)] of
the configuration exhibits an overcoupled behavior: the phase
undergoes a sudden drop of 360at the resonance. Hence,
this configuration has been selected for YTO’s because the
high coupling level yields the oscillation condition over a
wide frequency range. The agreement between simulation [see
Fig. 2(a)] and experiment (see Fig. 2b) validates the use of the
variational formulation (7), (8) in the case of lossy gyrotropic
layers. The value of the dc-biasing external magnetic field used
for the measurement is Oe. It induces an internal
dc field of 3500 Oe. It has to be noted that this value is used
for the computation of the tensor component . A perfect
prediction of the resonant frequency is observed.

B. Illustration of the Variational Behavior

Simulated results in Fig. 2 use the well-known current
distribution

for

for (33a)

having the corresponding Fourier transform

(33b)
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(a) (b)

Fig. 2. Results obtained using variational formulation (26)–(28) applied to the topology of Fig. 1. (a) Magnitude and phase of simulated input reflection
coefficient. (b) Magnitude and phase of measured reflection coefficient. DC magnetic field inside YIG film is 3500 Oe for simulation and measurement.

We have also compared results obtained using two different
trial potentials, resulting from two different shapes of the trial
current density . The first is given by (33), and the second
is the uniform current density defined by

for

for (34a)

which has as Fourier transform

(34b)

Fig. 3 shows the comparison, expressed as the relative dif-
ference between the magnitudes of the reflection coefficients
computed using (33) and (34), respectively. This difference
never exceeds 1.3%, and the error around the resonance is
mainly due to a slight shift of resonant frequency induced by
the change of current distribution. Hence, the shape of the
trial current and potentials has no significant influence on the
reflection coefficient computed using (30)–(32). Such a result
was expected as a consequence of our proof in the appendix.

V. CONCLUSIONS

We have developed an efficient energetic variational for-
mulation for the input impedance of MSFVW resonators,
containing lossy gyrotropic YIG films. The formulation is
based on the proof of the variational character of the magnetic
energy associated with MSW’s, which remains valid even
when non-Hermitian lossy media are present. The excellent
agreement observed between theory and measurement val-
idates the use of this model for designing YTO devices.
The model was indeed used by the authors in the frame of
an ASTP-4 contract funded by the European Space Agency,
Estec, The Netherlands. Designs obtained using this model

Fig. 3. Relative difference between magnitudes of reflection coefficients
simulated using two current densities (33) and (34), respectively.

have been presented in [24]. The model is presently modified
in order to design wide-band YTO in coplanar-waveguide
technology. It has to also be mentioned that the model can be
adapted to other types of MSW (surface- or backward-volume
waves), obtained by changing the orientation of the applied dc
field, because there is no restriction on the permeability tensor.
Hence, a number of other configurations will be investigated
in the future.

APPENDIX

We consider (8) and intend to prove that ( ) is
variational with respect to the scalar potential associated
with MSW’s in each layer. Varying and in each layer
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and rearranging yields

(A1)

with .
Keeping in mind that the trial magnetic potential in each

layer is defined as

(A2)

we may rewrite the error on the magnetic energy as

(A3)

We then use Green’s identity

(A4)

and transform the two terms of (A3) into

(A5)

(A6)

The volume integral in vanishes because the exact
potential satisfies (4). Similarly, the volume integral in

vanishes by imposing

(A7)

which is equivalent to impose that the trial magnetic potential
defined by (A2) satisfies (4), since the exact potential does.

Under this assumption, we obtain the global error made on
the energy as a summation of the integrals on the surfaces
enclosing each volume :

(A8)

Noting , the exact induction field, and , the trial one, we
finally obtain

(A9)

We note , the interface between layerand , which is
common to and . The union of the parts of and
having no interfaces in common forms the surface, enclosing
the global volume , and we rewrite (A9) as

(A10)

As for the derivation of the magnetostatic form (6) of the
Poynting theorem, we first study the behavior of (A9) and
(A10) at interfaces between layersand . Two areas have
to be considered.

1) No conductors are present between layersand . Then,
the normal component of the exact induction field and
the exact magnetic potential are continuous on the two
sides of this conductor-free area of

(A11)

(A12)

and the second term of (A10) is rewritten as (neglecting
the second-order terms and )

(A13)

by virtue of (A11).
This term vanishes, provided that the trial induc-

tion field has normal components continuous at the
conductor-free part of .

The third term of (A10) is rewritten as

(A14)

By virtue of (A12), this term will vanish, provided
that the trial magnetic potential is continuous at the
conductor-free part of .
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2) On the perfect conductors, the normal component of the
exact induction field vanishes as follows:

with

On that area of , the second term of (A10) simplifies
into

(A15)

while the third one vanishes.

Hence, a sufficient condition to make the second term of
(A10) vanish on the perfect conductor is either to make the
product continuous at the interface , or
subtract its integral (A15) from (8), as is classically done in
[25], or to make the normal component of the trial induction
field vanish at the perfect conductor. Finally, under such
assumptions, the error made on the global energy reduces to
the integral on the surface enclosing the global volume
and may be rewritten, to the second-order error, as

(A16)

Hence, an efficient way to cancel is to impose that
the volume considered is such that and vanish on its
enclosing surface , or that both the trial and true induction
fields vanish.
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